±«Óătv

Geometric problem solving - Higher

Geometric problems can be solved using the rules for adding and subtracting and multiplying vectors by a .

Example

OABC is a parallelogram. \(\overrightarrow{OA}\) is represented by the vector \(\mathbf{a}\) and \(\overrightarrow{OC}\) is represented by the vector \(\mathbf{c}\).

M is the mid-point of BC and N is the point on OB such that ON:NB = 2:1.

  1. Find expressions for these vectors, giving the answers in the simplest form: \(\overrightarrow{ON}\), \(\overrightarrow{OM}\), \(\overrightarrow{AN}\) and \(\overrightarrow{AM}\).
  2. Show that points A, N and M lie on a straight line.
Vectors OA, AB, BC, OC and OB (parallelogram)

Part 1

Point N is \(\frac{2}{3}\) of the distance from O to B.

\(\overrightarrow{ON} = \frac{2}{3} \overrightarrow{OB}\)

\(\overrightarrow{OB} = \mathbf{a} + \mathbf{c}\)

\(\overrightarrow{ON} = \frac{2}{3}(\mathbf{a} + \mathbf{c})\)

Point M is half the distance from C to B.

\(\overrightarrow{CM} = \frac{1}{2} \overrightarrow{CB}\)

\(\overrightarrow{CM} = \frac{1}{2} \mathbf{a}\)

\(\overrightarrow{OM} = \overrightarrow{OC} + \overrightarrow{CM}\)

\(\overrightarrow{OM} = \mathbf{c} + \frac{1}{2} \mathbf{a}\)

\(\overrightarrow{AN} = \overrightarrow{AO} + \overrightarrow{ON}\)

\(\overrightarrow{AN} = \mathbf{-a} + \frac{2}{3} (\mathbf{a} + \mathbf{c}) = -\frac{1}{3} \mathbf{a} + \frac{2}{3} \mathbf{c}\)

\(\overrightarrow{AM} = \overrightarrow{AO} + \overrightarrow{OM}\)

\(\overrightarrow{AM} = \mathbf{-a} + \frac{1}{2} \mathbf{a} + \mathbf{c} = -\frac{1}{2} \mathbf{a} + \mathbf{c}\)

Part 2

To prove that points A, N and M lie on a straight line:

Show \(\overrightarrow{AM}\) is a multiple of \(\overrightarrow{AN}\).

\(\frac{3}{2} \overrightarrow{AN} = \frac{3}{2} (-\frac{1}{3} \mathbf{a} + \frac{2}{3} \mathbf{c}) = -\frac{1}{2} \mathbf{a} + \mathbf{c} = \overrightarrow{AM}\)

Therefore \(\overrightarrow{AM}\) and \(\overrightarrow{AN}\) are . They also share a common point A so they lie on the same straight line.

Points which lie on the same straight line are called collinear.