±«Óătv

Converting recurring decimals - Higher

A recurring decimal exists when decimal numbers repeat forever. For example, \(0. \dot{3}\) means 0.333333... - the decimal never ends.

Dot notation is used with recurring decimals. The dot above the number shows which numbers recur, for example \(0.5 \dot{7}\) is equal to 0.5777777... and \(0. \dot{2} \dot{7}\) is equal to 0.27272727...

If two dots are used, they show the beginning and end of the recurring group of numbers: \(0. \dot{3} 1 \dot{2}\) is equal to 0.312312312...

Example

How is the number 0.57575757... written using dot notation?

In this case, the recurring numbers are the 5 and the 7, so the answer is \(0. \dot{5} \dot{7}\).

Example

Convert \(\frac{5}{6}\) to a recurring decimal.

Divide 5 by 6.

5 divided by 6 is 0, remainder 5, so carry the 5 to the tenths column.

50 divided by 6 is 8, remainder 2.

20 divided by 6 is 3 remainder 2.

Because the remainder is 2 again, the digit 3 is going to recur:

Diagram showing how to converting 5/6 into a recurring decimal

\(\frac{5}{6} = 0.8333 ... = 0.8\dot{3}\)

Algebra can be used to convert recurring decimals into fractions.

Example

Convert \(0. \dot{1}\) to a fraction.

\(0. \dot{1}\) has 1 digit recurring.

Firstly, write out \(0. \dot{1}\) as a number, using a few iterations (repeats) of the decimal.

0.111111111...

Call this number \(x\). We have an equation \(x = 0.1111111\)...

If we multiply this number by 10 it will give a different number with the same digit recurring.

So if:

\(x = 0.11111111\)...then

\(10x = 1.11111111
\)

Notice that after the decimal points the recurring digits match up. So subtracting these equations gives:

\(10x~–~x = 1.111111
 – 0.111111
\)

so \(9x = 1\)

Dividing both sides by 9 gives:

\(x = \frac{1}{9}\)

so \(~ 0. \dot{1} = \frac{1}{9}\)

When 2 digits recur, multiply by 100 so that the recurring digits after the decimal point keep the same place value. Similarly, when 3 digits recur multiply by 1000 and so on.

Question

Show that \(0. \dot{1} \dot{8}\) is equal to \(\frac{2}{11}\).

Question

Show that \(0.2 \dot{8}\) is equal to \(\frac{13}{45}\).