±«Óătv

Electrical power

Heating up wires

As flow through wires, they collide with the in the wire which causes the ions to more. This increased vibration of the ions increases the temperature of the wire. Energy has been transferred from the chemical of the battery into the internal energy store of the wire.

The amount of energy transferred each second () between the energy stores can be calculated using the equation:

power = potential difference Ă— current

\(P = V \times I\)

This is when:

  • power (P) is measured in watts (W)
  • (V) is measured in volts (V)
  • (I) is measured in amps (A)

One watt is equal to one joule per second (J/s).

Example

How much energy is transferred each second by a current of 2 amps (A) driven by a potential difference of 230 volts (V)?

\(P = V \times I\)

\(P = 230 \times 2\)

\(P = 460~W\)

Power can also be written as:

power = current2 Ă— resistance

\(P = I^2 \times R\)

This is when:

  • power (P) is measured in watts (W)
  • current (I) is measured in amps (A)
  • (R) is measured in ohms (Ω)

Question

What power is dissipated by a current of 3 A through a 10 Ω ?

Efficient transmission of power

Energy can be transferred by an electrical current; electrical appliances need to be given enough energy every second to work properly. Electrical power can be delivered as a low current with a high , or a high current with a low voltage.

power = current2 Ă— resistance

The equation shows that a high current will have a much higher heating effect on the transmission wires than a low current. For this reason, transmitting energy at a high voltage with a low current will keep the wires cooler and waste less energy.